Séminaire Lotharingien de Combinatoire **78B** (2017) Article #64, 12 pp.

Block numbers of permutations and Schur-positivity

Ron M. Adin^{1*}, Eli Bagno^{2†} and Yuval Roichman^{1‡}

¹Department of Mathematics, Bar-Ilan University, Ramat-Gan, Israel ²Department of Applied Mathematics, Jerusalem College of Technology, Jerusalem, Israel

Abstract. The *block number* of a permutation is the maximal number of components in its expression as a direct sum. We show that the distribution of the set of left-to-right-maxima over 321-avoiding permutations with a given block number k is equal to the distribution of this set over 321-avoiding permutations with the last descent of the inverse permutation at position n - k. This result is analogous to the Foata-Schützenberger equi-distribution theorem, and implies Schur-positivity of the quasi-symmetric generating function of descent set over 321-avoiding permutations with a prescribed block number.

Keywords: Schur positivity, permutation statistics, pattern avoidance, quasi-symmetric function.

1 Introduction

Given any subset *A* of the symmetric group S_n , define the quasi-symmetric function

$$\mathcal{Q}(A) \coloneqq \sum_{\pi \in A} \mathcal{F}_{n, \operatorname{Des}(\pi)},$$

where $\text{Des}(\pi) := \{i : \pi(i) > \pi(i+1)\}$ is the *descent set* of π and $\mathcal{F}_{n,D}$ (for $D \subseteq [n-1]$) are Gessel's *fundamental quasi-symmetric functions;* see Section 2.3 for more details. The following long-standing problem was first posed in [10].

Problem 1.1. For which subsets $A \subseteq S_n$ is Q(A) symmetric?

A symmetric function is *Schur-positive* if all the coefficients in its expansion in the basis of Schur functions are nonnegative. Determining whether a given symmetric function is Schur-positive is a major problem in contemporary algebraic combinatorics [16].

Call a subset $A \subseteq S_n$ Schur-positive if Q(A) is symmetric and Schur-positive. Classical examples of Schur-positive sets of permutations include inverse descent classes [9],

^{*}radin@math.biu.ac.il

⁺bagnoe@jct.ac.il

[‡]yuvalr@math.biu.ac.il

Knuth classes [9], conjugacy classes [10, Theorem 5.5], and permutations with a fixed inversion number [2, Prop. 9.5].

New constructions of Schur-positive sets of permutations were described in [8] and [13]. Inspired by these examples, Sagan and Woo raised the problem of finding Schurpositive pattern-avoiding sets [13].

The goal of this paper is to present a new example of a Schur-positive set of permutations which involves pattern-avoidance: the set of 321-avoiding permutations having a prescribed number of blocks. We shall state that more explicitly.

A permutation $\pi \in S_n$ is 321-*avoiding* if the sequence $(\pi(1), \ldots, \pi(n))$ contains no decreasing subsequence of length 3. Denote by $S_n(321)$ the set of 321-avoiding permutations in S_n . For a permutation $\pi \in S_n$ let

$$bl(\pi) \coloneqq |\{i : (\forall j \le i) \ \pi(j) \le i\}$$

be the *block number* of π . The block number was studied in [17] and references therein, as the cardinality of the *connectivity set* of π . Denote

$$Bl_{n,k} \coloneqq \{\pi \in \mathcal{S}_n(321) : \operatorname{bl}(\pi) = k\}$$

Recall the *Frobenius characteristic map* ch, from class functions on S_n to symmetric functions, defined by $ch(\chi^{\lambda}) = s_{\lambda}$ and extended by linearity. Our main result is:

Theorem 1.2. For any $1 \le k \le n$, the set $Bl_{n,k}$ is Schur-positive. In fact, for $1 \le k \le n-1$

$$\mathcal{Q}(Bl_{n,k}) = \operatorname{ch}(\chi^{(n-1,n-k)} \downarrow_{\mathcal{S}_n}^{\mathcal{S}_{2n-k-1}}),$$

where $\chi \downarrow_H^G$ stands for the restriction of the character χ from the group G to the group H; and, for k = n

$$\mathcal{Q}(Bl_{n,n}) = \operatorname{ch}(\chi^{(n)}) = s_{(n)}$$

The coefficients of the Schur expansion of $Q(Bl_{n,k})$ are described in Equation (5.1) below.

The proof of Theorem 1.2 involves a left-to-right-maxima-preserving bijection and a resulting equi-distribution result. Specifically, let

$$ltrMax(\pi) \coloneqq \{i : \pi(i) = max\{\pi(1), ..., \pi(i)\}\}$$

be the set of *left-to-right maxima* in a permutation π . The *descent set* of π is

$$Des(\pi) := \{i : \pi(i) > \pi(i+1)\}.$$

Define

$$\operatorname{ldes}(\pi) \coloneqq \max\{i : i \in \operatorname{Des}(\pi)\}\$$

to be the *last descent* of π , with $ldes(\pi) \coloneqq 0$ if $Des(\pi) = \emptyset$ (i.e., if π is the identity permutation).

For every $I \subseteq [n]$, let $\mathbf{x}^I := \prod_{i \in I} x_i$. Our equi-distribution result is:

Block numbers of permutations and Schur-positivity

Theorem 1.3. For every positive integer n

$$\sum_{\pi \in \mathcal{S}_n(321)} \mathbf{x}^{\operatorname{ltrMax}(\pi)} q^{\operatorname{bl}(\pi)} = \sum_{\pi \in \mathcal{S}_n(321)} \mathbf{x}^{\operatorname{ltrMax}(\pi)} q^{n - \operatorname{ldes}(\pi^{-1})}$$

See also Corollary 4.6 below.

Remark 1.4. An equivalent formulation, replacing π by π^{-1} and using $bl(\pi^{-1}) = bl(\pi)$, is:

$$\sum_{\pi \in \mathcal{S}_n(321)} \mathbf{x}^{\operatorname{ltrMax}(\pi^{-1})} q^{\operatorname{bl}(\pi)} = \sum_{\pi \in \mathcal{S}_n(321)} \mathbf{x}^{\operatorname{ltrMax}(\pi^{-1})} q^{n-\operatorname{ldes}(\pi)}.$$

It is reminiscent of the classical Foata-Schützenberger Theorem

$$\sum_{\pi \in \mathcal{S}_n} \mathbf{x}^{\operatorname{Des}(\pi^{-1})} q^{\operatorname{inv}(\pi)} = \sum_{\pi \in \mathcal{S}_n} \mathbf{x}^{\operatorname{Des}(\pi^{-1})} q^{\operatorname{maj}(\pi)};$$

see Observation 2.2 below.

After some necessary preliminaries in Section 2, we shall state a basic enumerative result in Section 3. Then Section 4 will outline the main idea in the proof of Theorem 1.3, and Section 5 will deduce Theorem 1.2 from a corollary of Theorem 1.3. Section 6 contains some final remarks.

2 Preliminaries

2.1 Statistics on permutations and on SYT

For a positive integer n let $[n] := \{1, 2, ..., n\}$, and let S_n denote the n-th symmetric group, the group of all permutations of [n].

Observation 2.1. If $\pi \in S_n$ then the restriction of π to the set $\operatorname{ltrMax}(\pi)$ is monotone increasing. If, moreover, $\pi \in S_n(321)$ then the restriction of π to the complementary set $[n] \setminus \operatorname{ltrMax}(\pi)$ is also monotone increasing.

Observation 2.2. If $\pi \in S_n(321)$ then the set $ltrMax(\pi)$ uniquely determines the set $Des(\pi)$. Explicitly, for any $1 \le i \le n-1$,

$$i \in \text{Des}(\pi) \iff i \in \text{ltrMax}(\pi) \text{ and } i+1 \notin \text{ltrMax}(\pi).$$

For a permutation $\pi \in S_n$ let

$$\operatorname{Ides}(\pi) \coloneqq \max\{i : i \in \operatorname{Des}(\pi)\},\$$

be its *last descent*, with $ldes(\pi) \coloneqq 0$ if $Des(\pi) = \emptyset$ (i.e., if π is the identity permutation).

For a skew shape λ/μ , let $height(\lambda/\mu)$ be the number of rows in λ/μ and let SYT(λ/μ) be the set of standard Young tableaux of shape λ/μ . We use the English convention, according to which row indices increase from top to bottom (see, e.g., [12, Ch. 2.5]). The *descent set* of a standard Young tableau *T* is

 $Des(T) \coloneqq \{i : i + 1 \text{ appears in a lower row of } T \text{ than } i\}.$

Its *last descent* is

 $\operatorname{ldes}(T) \coloneqq \max\{i : i \in \operatorname{Des}(T)\},\$

with $ldes(T) \coloneqq 0$ if $Des(T) = \emptyset$.

We shall make use of the Robinson-Schensted-Knuth (RSK) correspondence which maps each permutation $\pi \in S_n$ to a pair (P_{π}, Q_{π}) of standard Young tableaux of the same shape $\lambda \vdash n$. A detailed description can be found, for example, in [12, Ch. 3.1] or in [15, Ch. 7.11]. A fundamental property of the RSK correspondence is:

Fact 2.3. For each $\pi \in S_n$, $\text{Des}(P_\pi) = \text{Des}(\pi^{-1})$ and $\text{Des}(Q_\pi) = \text{Des}(\pi)$.

2.2 The *k*-fold Catalan number

Recall the *n*-th Catalan number, defined by

$$C_n := \frac{1}{n+1} \binom{2n}{n} = \binom{2n}{n} - \binom{2n}{n+1} \qquad (n \ge 0),$$

with generating function

$$c(x) \coloneqq \sum_{n=0}^{\infty} C_n x^n = \frac{1 - \sqrt{1 - 4x}}{2x}$$

For each $0 \le k \le n$, the *n*-th *k*-fold Catalan number $C_{n,k}$ is the coefficient of x^n in $(xc(x))^k$. These numbers are also called *ballot numbers*, and form the Catalan triangle [14, A009766]. As proved by Catalan himself [6], they are given explicitly by

$$C_{n,k} = \frac{k}{2n-k} \binom{2n-k}{n} = \binom{2n-k-1}{n-1} - \binom{2n-k-1}{n} \qquad (1 \le k \le n)$$

and $C_{n,0} = \delta_{n,0}$ $(n \ge 0)$; in particular, $C_{n,1} = C_{n-1}$ for $n \ge 1$.

Among the many interpretations of $C_{n,k}$ one can mention the number of lattice paths from (k, 1) to (n, n), consisting of steps (1, 0) and (0, 1), which never go strictly above the line y = x; see, e.g., [18, Cor. 16] which uses a slightly different indexing.

The following proposition, reformulating results presented in [7, 18], relates the *k*-fold Catalan numbers to 321-avoiding permutations and to standard Young tableaux.

Proposition 2.4. ([7, 18]) For positive integers $1 \le k \le n$,

$$|\{\pi \in S_n(321) : \operatorname{ldes}(\pi^{-1}) = n - k\}| = |SYT(n - 1, n - k)| = C_{n,k}.$$

2.3 Quasi-symmetric functions

Schur functions $\{s_{\lambda} : \lambda \vdash n\}$, indexed by partitions of *n*, form a distinguished basis for the vector space Λ^n of symmetric functions which are homogeneous of degree *n*; see, e.g., [15, Corollary 7.10.6]. Recall that a symmetric function in Λ^n is *Schur-positive* if all the coefficients in its expansion in this basis of Schur functions are nonnegative.

Definition 2.5. [15, p. 7.19] A *quasi-symmetric function* (with rational coefficients) in the variables $x = (x_1, x_2, ...)$ is a formal power series $f(x) \in \mathbb{Q}[[x]]$, of bounded degree, such that for any nonnegative integer exponents $a_1, ..., a_k$ and any two increasing lists of indices $i_1 < ... < i_k$ and $j_1 < ... < j_k$

$$[x_{i_1}^{a_1} \cdots x_{i_k}^{a_k}]f = [x_{j_1}^{a_1} \cdots x_{j_k}^{a_k}]f$$

Clearly, every symmetric function is quasi-symmetric, but not conversely, as the series $\sum_{i < j} x_i^2 x_j$ shows.

For each subset $D \subseteq [n-1]$ define the fundamental quasi-symmetric function

$$\mathcal{F}_{n,D}(\mathbf{x}) \coloneqq \sum_{\substack{i_1 \leq i_2 \leq \dots \leq i_n \\ i_j < i_{j+1} \text{ if } j \in D}} x_{i_1} x_{i_2} \cdots x_{i_n}.$$

Let \mathcal{B} be a (multi)set of combinatorial objects, equipped with a *descent map* Des : $\mathcal{B} \rightarrow 2^{[n-1]}$ which associates to each element $b \in \mathcal{B}$ a set $Des(b) \subseteq [n-1]$. Define the quasi-symmetric function

$$\mathcal{Q}(\mathcal{B}) \coloneqq \sum_{b \in \mathcal{B}} m(b, \mathcal{B}) \mathcal{F}_{n, \text{Des}(b)},$$

where m(b, B) is the multiplicity of the element b in B. With some abuse of terminology, we say that B is Schur-positive when Q(B) is.

The following key theorem is due to Gessel.

Proposition 2.6. [15, Theorem 7.19.7] *For every shape* $\lambda \vdash n$,

$$\mathcal{Q}(\mathrm{SYT}(\lambda)) = s_{\lambda}$$

Recall the notation P_{π} from Section 2.1. For every standard Young tableau *T* of size *n*, the set

$$\mathcal{C}_T \coloneqq \{\pi \in \mathcal{S}_n : P_\pi = T\}$$

is the *Knuth class* corresponding to *T*. Fact 2.3 and Proposition 2.6 imply the following well-known result.

Proposition 2.7. *Knuth classes are Schur-positive.*

The following lemma will be used in Section 5.

Lemma 2.8. [8, Lemma 8.1] For every Schur-positive set $A \subseteq S_n$, the (set) statistics Des and $n - \text{Des} := \{n - i | i \in \text{Des}\}$ are equi-distributed over A.

3 The block number of a permutation

3.1 Definitions

Direct sums and block decomposition of permutations appear naturally in the study of pattern-avoiding classes [3, 4].

Let $\pi \in S_m$ and $\sigma \in S_n$. The *direct sum* of π and σ is the permutation $\pi \oplus \sigma \in S_{m+n}$ defined by

$$\pi \oplus \sigma \coloneqq \begin{cases} \pi(i), & \text{if } i \leq m; \\ \sigma(i-m) + m, & \text{otherwise.} \end{cases}$$

For example, if π = 312 and σ = 2413 then $\pi \oplus \sigma$ = 3125746; see Figure 1.

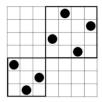


Figure 1: The permutation 312 ⊕ 2413 = 3125746

A nonempty permutation which is not the direct sum of two nonempty permutations is called \oplus -*irreducible*. Each permutation π can be written uniquely as a direct sum of \oplus -irreducible ones, called the *blocks* of π ; their number, denoted by bl(π), is the *block* number of π .

Example 3.1. bl(45321) = 1, bl(31254) = 2, and bl(1234) = 4.

Observation 3.2. The block number of a permutation $\pi \in S_n$ is

 $bl(\pi) = 1 + |\{1 \le i \le n - 1 : \max(\pi(1), \dots, \pi(i)) < \min(\pi(i+1), \dots, \pi(n))\}|.$

The following equivalent definition was proposed by Michael Joseph and Tom Roby [11].

Observation 3.3.

$$bl(\pi) = |\{1 \le i \le n : (\forall j \le i) \ \pi(j) \le i\}|.$$

3.2 Counting 321-avoiding permutations by block number

Recall from Section 2.2 the Catalan generating function

$$c(x) \coloneqq \sum_{n=0}^{\infty} C_n x^n.$$

One can prove without difficulty (see [1])

Proposition 3.4. For any fixed positive integer k, the ordinary generating function for the number of 321-avoiding permutations in S_n $(n \ge k)$ with exactly k blocks is $(xc(x))^k$.

Combining Proposition 3.4 with Proposition 2.4 we deduce

Corollary 3.5. For any integers $1 \le k \le n$,

$$|\{\pi \in S_n(321) : bl(\pi) = k\}| = \{\pi \in S_n(321) : ldes(\pi^{-1}) = n - k\}|$$

= |SYT(n-1, n-k)|.

Corollary 3.5 is refined in this paper; see Theorem 1.3 above and Corollary 4.6 below.

4 Equi-distribution

Definition 4.1. For $1 \le k \le n$ denote

$$Bl_{n,k} := \{ \pi \in S_n(321) : bl(\pi) = k \}$$

and

$$L_{n,k} = \{\pi \in S_n(321) : \operatorname{ldes}(\pi^{-1}) = k\}.$$

Theorem 1.3 is proved via a left-to-right-maxima-preserving bijection from $Bl_{n,k}$ to $L_{n,n-k}$.

Definition 4.2. Define maps $f_n : S_n(321) \to S_n(321)$, recursively, for all $n \ge 1$. For n = 1 the definition is obvious, since $S_1(321)$ consists of a unique permutation. For $\pi \in S_n(321)$, $n \ge 2$, the recursive definition of $f_n(\pi)$ depends on $k := bl(\pi)$ and on the locations of the letters n - 1 and n in π . Distinguish the following three cases:

Case A: $\pi^{-1}(n) = n$, i.e., *n* is in the last position. Then: delete *n*, apply f_{n-1} , and insert *n* at the last position.

- **Case B:** $\pi^{-1}(n-1) < \pi^{-1}(n) < n$, i.e., *n* is to the right of n-1 but not in the last position. Then: delete *n*, apply f_{n-1} , insert *n* at the same position as in π , and multiply on the left by the transposition (n-k-1, n-k).
- **Case C:** $\pi^{-1}(n) < \pi^{-1}(n-1)$, i.e., n-1 is to the right of n (and must be the last letter, since π is 321-avoiding). Then: let $\pi' \coloneqq (n-1,n)\pi$, define $f_n(\pi')$ according to case A above, and multiply it

on the left by the cycle (n - k, n - k + 1, ..., n).

Remark 4.3. This recursive definition yields a sequence of permutations $(\pi_n, \pi_{n-1}, ..., \pi_1)$, starting with $\pi_n = \pi$. For each $2 \le i \le n$, $\pi_{i-1} \in S_{i-1}$ is obtained from $\pi_i \in S_i$ by deleting *i* from π_i (in cases *A* and *B*) or by deleting *i* from $(i - 1, i)\pi_i$ (in case *C*). To recover $f_i(\pi_i)$ from $f_{i-1}(\pi_{i-1})$, the letter *i* is inserted exactly where it was deleted (for example — in the last position, in cases *A* and *C*), and then the permutation is multiplied, on the left, by a suitable cycle.

Example 4.4. Let $\pi = 31254786 \in S_8$, so that $bl(\pi) = 3$ and $ltrMax(\pi) = \{1, 4, 6, 7\}$. The recursive process is illustrated by the following diagram, where the arrow $\pi_i \rightarrow \pi_{i-1}$ is decorated by the case and by the corresponding cycle.

$$\pi = \pi_8 = 31254786 \quad \xrightarrow{B} \quad \pi_7 = 3125476 \xrightarrow{C} \quad \pi_6 = 312546$$
$$\xrightarrow{A} \quad \pi_5 = 31254 \xrightarrow{C} \quad \pi_4 = 3124 \xrightarrow{A} \quad \pi_3 = 312$$
$$\xrightarrow{C} \quad \pi_2 = 21 \xrightarrow{C} \quad \pi_1 = 1.$$

$$\begin{array}{ccc} f_1(\pi_1) = 1 & \xrightarrow{(12)} & f_2(\pi_2) = 21 \xrightarrow{(23)} & f_3(\pi_3) = 312 \longrightarrow f_4(\pi_4) = 3124 \\ & \xrightarrow{(345)} & f_5(\pi_5) = 41253 \longrightarrow f_6(\pi_6) = 412536 \\ & \xrightarrow{(4567)} & f_7(\pi_7) = 5126374 \xrightarrow{(45)} & f_8(\pi) = f_8(\pi_8) = 41263785. \end{array}$$

Note that here $ldes(f_8(\pi)^{-1}) = 5 = 8 - bl(\pi)$ and $ltrMax(f_8(\pi)) = \{1, 4, 6, 7\} = ltrMax(\pi)$.

Our main claim is

Theorem 4.5. For each $1 \le k \le n$, the map f_n defined above is a left-to-right-maxima-preserving bijection from $Bl_{n,k}$ onto $L_{n,n-k}$.

The (quite technical) proof of Theorem 4.5 is given in the full paper version [1].

Theorem 1.3 follows from Theorem 4.5, and implies in turn

Corollary 4.6. For every positive integer n,

$$\sum_{\pi \in S_n(321)} \mathbf{x}^{\text{Des}(\pi)} t^{\pi^{-1}(n)} q^{\text{bl}(\pi)} = \sum_{\pi \in S_n(321)} \mathbf{x}^{\text{Des}(\pi)} t^{\pi^{-1}(n)} q^{n-\text{ldes}(\pi^{-1})}.$$

Proof. By Observation 2.2, the set $ltrMax(\pi)$ determines $Des(\pi)$. In addition, $\pi^{-1}(n)$ is the maximal element of $ltrMax(\pi)$.

5 Proof of Theorem 1.2

Setting *t* = 1 in Corollary 4.6 gives

$$\sum_{\pi \in \mathcal{S}_n(321)} \mathbf{x}^{\operatorname{Des}(\pi)} q^{\operatorname{bl}(\pi)} = \sum_{\pi \in \mathcal{S}_n(321)} \mathbf{x}^{\operatorname{Des}(\pi)} q^{n-\operatorname{Ides}(\pi^{-1})},$$

and comparing the coefficients of q^k on both sides gives

$$\mathcal{Q}(Bl_{n,k}) = \mathcal{Q}(L_{n,n-k}) \qquad (1 \le k \le n).$$

It therefore suffices to prove the claim for $L_{n,n-k}$ instead of $Bl_{n,k}$.

Note that a permutation π is 321-avoiding if and only if $height(P_{\pi}) < 3$, in the terminology of Section 2.1. The set

$$L_{n,n-k} = \{\pi \in S_n(321) : \operatorname{ldes}(\pi^{-1}) = n - k\}$$
$$= \{\pi \in S_n : \operatorname{height}(P_\pi) < 3 \text{ and } \operatorname{ldes}(P_\pi) = n - k\}$$

is therefore a disjoint union of Knuth classes and thus, by Proposition 2.7, Schur-positive. By the above description of $L_{n,n-k}$, Fact 2.3 and Proposition 2.6,

$$\begin{aligned} \mathcal{Q}(L_{n,n-k}) &= \sum_{\pi \in L_{n,n-k}} \mathcal{F}_{n,\mathrm{Des}(\pi)} = \sum_{\substack{\lambda \vdash n \\ \ell(\lambda) < 3}} \sum_{\substack{P \in \mathrm{SYT}(\lambda) \\ \mathrm{Ides}(P) = n-k}} \sum_{\substack{Q \in \mathrm{SYT}(\lambda) \\ \mathcal{F}_{n,\mathrm{Des}(Q)}} \mathcal{F}_{n,\mathrm{Des}(Q)} \\ &= \sum_{\substack{\lambda \vdash n \\ \ell(\lambda) < 3}} |\{P \in \mathrm{SYT}(\lambda) : \mathrm{Ides}(P) = n-k\}|s_{\lambda}. \end{aligned}$$

We conclude that, for every $\lambda \vdash n$,

$$\langle \mathcal{Q}(Bl_{n,k}), s_{\lambda} \rangle = \langle \mathcal{Q}(L_{n,n-k}), s_{\lambda} \rangle = \begin{cases} |\{P \in \text{SYT}(\lambda) : \text{ldes}(P) = n-k\}|, & \text{if } \ell(\lambda) < 3; \\ 0, & \text{otherwise.} \end{cases}$$
(5.1)

For k = n we have ldes(P) = 0 only for the unique tableau of shape $\lambda = (n)$, so that

$$\langle \mathcal{Q}(L_{n,0}), s_{\lambda} \rangle = \delta_{\lambda,(n)}$$

and therefore

$$\mathcal{Q}(L_{n,0}) = s_{(n)}$$

as claimed.

Assume now that $1 \le k \le n-1$, so that $n \le (n-1) + (n-k)$. By the Branching Rule [12, Theorem 2.8.3], if $\lambda \vdash n$ is not contained in (n-1, n-k) then

$$\langle \chi^{(n-1,n-k)} \downarrow_{\mathcal{S}_n}^{\mathcal{S}_{2n-k-1}}, \chi^{\lambda} \rangle = 0,$$

and also

$$\langle \mathcal{Q}(L_{n,n-k}), s_{\lambda} \rangle = 0$$

since a standard tableau $P \in SYT(\lambda)$ (with $\ell(\lambda) < 3$, namely $\lambda = (n - m, m)$ with either m = 0 or m > n - k) cannot have ldes(P) = n - k.

If $\lambda = (n - m, m)$ with $1 \le m \le n - k$ then

$$\langle \chi^{(n-1,n-k)} \downarrow_{\mathcal{S}_n}^{\mathcal{S}_{2n-k-1}}, \chi^{(n-m,m)} \rangle = |\operatorname{SYT}((n-1,n-k)/(n-m,m))|.$$

Rotating the shape by 180° within a $2 \times n$ box, the right side is seen to be equal to

|SYT((n-m,m)/(k,1))|.

This, in turn, is equal to the number of SYT of shape (n - m, m) with the smallest k + 1 entries filling a (k, 1) shape in some specific order, say the one with 1, ..., k in the first row and k + 1 in the second. These are exactly the SYT of shape (n - m, m) with first descent equal to k. By Lemma 2.8, this number is equal to the number of SYT of shape (n - m, m) with last descent equal to n - k, namely to

$$|\{P \in SYT(\lambda) : Ides(P) = n - k\}| = \langle \mathcal{Q}(L_{n,n-k}), s_{\lambda} \rangle.$$

Thus

$$\mathcal{Q}(L_{n,n-k}) = \operatorname{ch}(\chi^{(n-1,n-k)} \downarrow_{\mathcal{S}_n}^{\mathcal{S}_{2n-k-1}}),$$

as claimed.

6 Final remarks

6.1 Hilbert series

Let P_n/I_n be the quotient of the polynomial ring $P_n = \mathbb{Q}[x_1, ..., x_n]$ by the ideal generated by quasi-symmetric functions without constant term. This algebra was studied by Aval, Bergeron and Bergeron [5], who determined its Hilbert series with respect to the grading by total degree in terms of statistics on Dyck paths. An alternative description follows from Corollary 4.6.

Proposition 6.1. The Hilbert series of the quotient P_n/I_n , graded by total degree, is equal to

$$\sum_{\pi \in \mathcal{S}_n(321)} q^{n-\mathrm{bl}(\pi)}$$

It is now desired to find two different bases for the graded ring P_n/I_n , both indexed by 321-avoiding permutations, with total degree equal to the block-number and to the last descent, respectively. Determining a nicely behaved linear action of the symmetric group (or of the Temperley-Lieb algebra) on these bases may provide a representation theoretic proof of Corollary 4.6.

6.2 Schur-positive pattern-statistic pairs

Sagan and Woo [13] raised the problem of finding Schur-positive pattern-avoiding sets. A natural goal is to look, further, for Schur-positive statistics on pattern-avoiding sets.

Definition 6.2. Let stat : $S_n \longrightarrow \mathbb{N}$ be a permutation statistic, and let $\emptyset \neq \Pi \subseteq S_m$ be a nonempty set of patterns. The *pattern-statistic pair* (Π , stat) is *Schur-positive* if

$$\mathcal{Q}(\{\pi \in \mathcal{S}_n(\Pi) : \operatorname{stat}(\pi) = k\})$$

is Schur-positive for all integers $n \ge 1$ and $k \ge 0$.

By Proposition 2.7, sets of permutations which are closed under Knuth relations are Schur-positive. It follows that if $S_n(\Pi)$ is closed under Knuth relations for every n, and the statistic stat is also invariant under these relations, then (Π , stat) is a Schur-positive pair. For example, letting ides(π) := $|\text{Des}(\pi^{-1})|$ and $e_m \in S_m$ be the identity permutation, the pair ($\{e_m\}$, ides) is Schur-positive. For similar reasons, the pair ($\{132, 312\}$, imaj) is Schur-positive, where imaj(π) is the major index of π^{-1} .

An example of a different type was given in this paper: By Theorem 1.2, ({321}, bl) is a Schur-positive pair. Note that the block number is not invariant under Knuth relations.

Problem 6.3. Find other Schur-positive pattern-statistic pairs, which are not invariant under Knuth relations.

References

- R. M. Adin, E. Bagno, and Y. Roichman. "Block decomposition of permutations and Schurpositivity". Preprint. 2016.
- [2] R. M. Adin and Y. Roichman. "Matrices, characters and descents". *Linear Algebra Appl.* 469 (2015), pp. 381–418. DOI.
- [3] M. Albert and M. Atkinson. "Simple permutations and pattern restricted permutations". Discrete Math. 300 (2005), pp. 1–15. DOI.
- [4] M. Albert, M. Atkinson, and V. Vatter. "Subclasses of the separable permutations". *Bull. London Math. Soc.* **43** (2011), pp. 859–870. DOI.
- [5] J.-C. Aval, F. Bergeron, and N. Bergeron. "Ideals of quasi-symmetric functions and supercovariant polynomials for *S_n*". *Adv. Math.* **181** (2004), pp. 353–367. DOI.
- [6] E. Catalan. "Sur les nombres de Segner". Rend. Circ. Mat. Palermo 1 (1887), pp. 190–201. DOI.
- [7] S. Connolly, Z. Gabor, and A. P. Godbole. "The location of the first ascent in a 123-avoiding permutation". *Integers* **15** (2015), Art. A13.

- [8] S. Elizalde and Y. Roichman. "Schur-positive sets of permutations via products and grid classes". To appear in *J. Algebraic Combin.* 2016. arXiv:1509.00045.
- [9] I. M. Gessel. "Multipartite *P*-partitions and inner products of Schur functions". *Contemp. Math.* **34** (1984), pp. 289–302. DOI.
- [10] I. M. Gessel and C. Reutenauer. "Counting permutations with given cycle structure and descent set". *J. Combin. Theory Ser. A* 64 (1993), pp. 189–215. DOI.
- [11] M. Joseph and T. Roby. Personal communication.
- [12] B. E. Sagan. *The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions*. 2nd ed. Graduate Texts in Math., Vol. 203. Springer-Verlag, 2001.
- [13] B. E. Sagan. "Pattern avoidance and quasisymmetric functions". 13th International Permutation Patterns Conference (London, UK, 2015). 2015. URL.
- [14] N. J. A. Sloane. *The On-Line Encyclopedia of Integer Sequences*. URL.
- [15] R. P. Stanley. *Enumerative Combinatorics*. Vol. 2. Cambridge Studies in Adv. Math., Vol. 62. Cambridge University Press, 1999.
- [16] R. P. Stanley. "Positivity problems and conjectures in algebraic combinatorics". *Mathematics: Frontiers and Perspectives*. American Math. Soc., 2000, pp. 295–319.
- [17] R. P. Stanley. "The descent set and connectivity set of a permutation". J. Integer Sequences 8 (2005), Art. 05.3.8. URL.
- [18] S. Tedford. "Combinatorial interpretations of convolutions of the Catalan numbers". *Integers* **11** (2011), Art. A3.