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Block numbers of permutations and
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Abstract. The block number of a permutation is the maximal number of components
in its expression as a direct sum. We show that the distribution of the set of left-to-
right-maxima over 321-avoiding permutations with a given block number k is equal
to the distribution of this set over 321-avoiding permutations with the last descent
of the inverse permutation at position n − k. This result is analogous to the Foata-
Schützenberger equi-distribution theorem, and implies Schur-positivity of the quasi-
symmetric generating function of descent set over 321-avoiding permutations with a
prescribed block number.
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1 Introduction

Given any subset A of the symmetric group Sn, define the quasi-symmetric function

Q(A) ∶= ∑
π∈A
Fn,Des(π),

where Des(π) ∶= {i ∶ π(i) > π(i + 1)} is the descent set of π and Fn,D (for D ⊆ [n − 1])
are Gessel’s fundamental quasi-symmetric functions; see Section 2.3 for more details. The
following long-standing problem was first posed in [10].

Problem 1.1. For which subsets A ⊆ Sn is Q(A) symmetric?

A symmetric function is Schur-positive if all the coefficients in its expansion in the ba-
sis of Schur functions are nonnegative. Determining whether a given symmetric function
is Schur-positive is a major problem in contemporary algebraic combinatorics [16].

Call a subset A ⊆ Sn Schur-positive if Q(A) is symmetric and Schur-positive. Classi-
cal examples of Schur-positive sets of permutations include inverse descent classes [9],
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Knuth classes [9], conjugacy classes [10, Theorem 5.5], and permutations with a fixed
inversion number [2, Prop. 9.5].

New constructions of Schur-positive sets of permutations were described in [8] and
[13]. Inspired by these examples, Sagan and Woo raised the problem of finding Schur-
positive pattern-avoiding sets [13].

The goal of this paper is to present a new example of a Schur-positive set of permu-
tations which involves pattern-avoidance: the set of 321-avoiding permutations having a
prescribed number of blocks. We shall state that more explicitly.

A permutation π ∈ Sn is 321-avoiding if the sequence (π(1), . . . , π(n)) contains no
decreasing subsequence of length 3. Denote by Sn(321) the set of 321-avoiding permu-
tations in Sn. For a permutation π ∈ Sn let

bl(π) ∶= ∣{i ∶ (∀j ≤ i)π(j) ≤ i}∣

be the block number of π. The block number was studied in [17] and references therein,
as the cardinality of the connectivity set of π. Denote

Bln,k ∶= {π ∈ Sn(321) ∶ bl(π) = k}.

Recall the Frobenius characteristic map ch, from class functions on Sn to symmetric
functions, defined by ch(χλ) = sλ and extended by linearity. Our main result is:

Theorem 1.2. For any 1 ≤ k ≤ n, the set Bln,k is Schur-positive. In fact, for 1 ≤ k ≤ n − 1

Q(Bln,k) = ch(χ(n−1,n−k) ↓
S2n−k−1
Sn

),

where χ ↓G
H stands for the restriction of the character χ from the group G to the group H; and,

for k = n
Q(Bln,n) = ch(χ(n)) = s(n).

The coefficients of the Schur expansion of Q(Bln,k) are described in Equation (5.1)
below.

The proof of Theorem 1.2 involves a left-to-right-maxima-preserving bijection and a
resulting equi-distribution result. Specifically, let

ltrMax(π) ∶= {i ∶ π(i) = max{π(1), . . . , π(i)}}

be the set of left-to-right maxima in a permutation π. The descent set of π is

Des(π) ∶= {i ∶ π(i) > π(i + 1)}.

Define
ldes(π) ∶= max{i ∶ i ∈ Des(π)}

to be the last descent of π, with ldes(π) ∶= 0 if Des(π) = ∅ (i.e., if π is the identity
permutation).

For every I ⊆ [n], let xI ∶= ∏i∈I xi. Our equi-distribution result is:
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Theorem 1.3. For every positive integer n

∑
π∈Sn(321)

xltrMax(π)qbl(π) = ∑
π∈Sn(321)

xltrMax(π)qn−ldes(π−1
).

See also Corollary 4.6 below.

Remark 1.4. An equivalent formulation, replacing π by π−1 and using bl(π−1) = bl(π), is:

∑
π∈Sn(321)

xltrMax(π−1
)qbl(π) = ∑

π∈Sn(321)
xltrMax(π−1

)qn−ldes(π).

It is reminiscent of the classical Foata-Schützenberger Theorem

∑
π∈Sn

xDes(π−1
)qinv(π) = ∑

π∈Sn

xDes(π−1
)qmaj(π);

see Observation 2.2 below.

After some necessary preliminaries in Section 2, we shall state a basic enumerative
result in Section 3. Then Section 4 will outline the main idea in the proof of Theorem 1.3,
and Section 5 will deduce Theorem 1.2 from a corollary of Theorem 1.3. Section 6
contains some final remarks.

2 Preliminaries

2.1 Statistics on permutations and on SYT

For a positive integer n let [n] ∶= {1, 2, . . . , n}, and let Sn denote the n-th symmetric group,
the group of all permutations of [n].

Observation 2.1. If π ∈ Sn then the restriction of π to the set ltrMax(π) is monotone
increasing. If, moreover, π ∈ Sn(321) then the restriction of π to the complementary set
[n] ∖ ltrMax(π) is also monotone increasing.

Observation 2.2. If π ∈ Sn(321) then the set ltrMax(π) uniquely determines the set
Des(π). Explicitly, for any 1 ≤ i ≤ n − 1,

i ∈ Des(π) ⇐⇒ i ∈ ltrMax(π) and i + 1 /∈ ltrMax(π).

For a permutation π ∈ Sn let

ldes(π) ∶= max{i ∶ i ∈ Des(π)},

be its last descent, with ldes(π) ∶= 0 if Des(π) = ∅ (i.e., if π is the identity permutation).
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For a skew shape λ/µ, let height(λ/µ) be the number of rows in λ/µ and let SYT(λ/µ)

be the set of standard Young tableaux of shape λ/µ. We use the English convention,
according to which row indices increase from top to bottom (see, e.g., [12, Ch. 2.5]). The
descent set of a standard Young tableau T is

Des(T) ∶= {i ∶ i + 1 appears in a lower row of T than i}.

Its last descent is
ldes(T) ∶= max{i ∶ i ∈ Des(T)},

with ldes(T) ∶= 0 if Des(T) = ∅.
We shall make use of the Robinson-Schensted-Knuth (RSK) correspondence which

maps each permutation π ∈ Sn to a pair (Pπ, Qπ) of standard Young tableaux of the
same shape λ ⊢ n. A detailed description can be found, for example, in [12, Ch. 3.1] or
in [15, Ch. 7.11]. A fundamental property of the RSK correspondence is:

Fact 2.3. For each π ∈ Sn, Des(Pπ) = Des(π−1) and Des(Qπ) = Des(π).

2.2 The k-fold Catalan number

Recall the n-th Catalan number, defined by

Cn ∶=
1

n + 1
(

2n
n
) = (

2n
n
) − (

2n
n + 1

) (n ≥ 0),

with generating function

c(x) ∶=
∞

∑
n=0

Cnxn =
1−

√
1− 4x

2x
.

For each 0 ≤ k ≤ n, the n-th k-fold Catalan number Cn,k is the coefficient of xn in (xc(x))k.
These numbers are also called ballot numbers, and form the Catalan triangle [14, A009766].
As proved by Catalan himself [6], they are given explicitly by

Cn,k =
k

2n − k
(

2n − k
n

) = (
2n − k − 1

n − 1
) − (

2n − k − 1
n

) (1 ≤ k ≤ n)

and Cn,0 = δn,0 (n ≥ 0); in particular, Cn,1 = Cn−1 for n ≥ 1.
Among the many interpretations of Cn,k one can mention the number of lattice paths

from (k, 1) to (n, n), consisting of steps (1, 0) and (0, 1), which never go strictly above
the line y = x; see, e.g., [18, Cor. 16] which uses a slightly different indexing.

The following proposition, reformulating results presented in [7, 18], relates the k-
fold Catalan numbers to 321-avoiding permutations and to standard Young tableaux.

Proposition 2.4. ([7, 18]) For positive integers 1 ≤ k ≤ n,

∣{π ∈ Sn(321) ∶ ldes(π−1) = n − k}∣ = ∣SYT(n − 1, n − k)∣ = Cn,k.
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2.3 Quasi-symmetric functions

Schur functions {sλ ∶ λ ⊢ n}, indexed by partitions of n, form a distinguished basis for
the vector space Λn of symmetric functions which are homogeneous of degree n; see,
e.g., [15, Corollary 7.10.6]. Recall that a symmetric function in Λn is Schur-positive if all
the coefficients in its expansion in this basis of Schur functions are nonnegative.

Definition 2.5. [15, p. 7.19] A quasi-symmetric function (with rational coefficients) in the
variables x = (x1, x2, . . .) is a formal power series f (x) ∈ Q[[x]], of bounded degree,
such that for any nonnegative integer exponents a1, . . . , ak and any two increasing lists
of indices i1 < . . . < ik and j1 < . . . < jk

[xa1
i1
⋯xak

ik
] f = [xa1

j1
⋯xak

jk
] f .

Clearly, every symmetric function is quasi-symmetric, but not conversely, as the series
∑i<j x2

i xj shows.
For each subset D ⊆ [n − 1] define the fundamental quasi-symmetric function

Fn,D(x) ∶= ∑
i1≤i2≤...≤in

ij<ij+1 if j∈D

xi1 xi2⋯xin .

Let B be a (multi)set of combinatorial objects, equipped with a descent map Des ∶

B → 2[n−1] which associates to each element b ∈ B a set Des(b) ⊆ [n − 1]. Define the
quasi-symmetric function

Q(B) ∶= ∑
b∈B

m(b,B)Fn,Des(b),

where m(b,B) is the multiplicity of the element b in B. With some abuse of terminology,
we say that B is Schur-positive when Q(B) is.

The following key theorem is due to Gessel.

Proposition 2.6. [15, Theorem 7.19.7] For every shape λ ⊢ n,

Q(SYT(λ)) = sλ.

Recall the notation Pπ from Section 2.1. For every standard Young tableau T of size
n, the set

CT ∶= {π ∈ Sn ∶ Pπ = T}

is the Knuth class corresponding to T. Fact 2.3 and Proposition 2.6 imply the following
well-known result.

Proposition 2.7. Knuth classes are Schur-positive.

The following lemma will be used in Section 5.

Lemma 2.8. [8, Lemma 8.1] For every Schur-positive set A ⊆ Sn, the (set) statistics Des and
n −Des ∶= {n − i ∣ i ∈ Des} are equi-distributed over A.
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3 The block number of a permutation

3.1 Definitions

Direct sums and block decomposition of permutations appear naturally in the study of
pattern-avoiding classes [3, 4].

Let π ∈ Sm and σ ∈ Sn. The direct sum of π and σ is the permutation π ⊕ σ ∈ Sm+n
defined by

π ⊕ σ ∶=

⎧⎪⎪
⎨
⎪⎪⎩

π(i), if i ≤ m;
σ(i −m) +m, otherwise.

For example, if π = 312 and σ = 2413 then π ⊕ σ = 3125746; see Figure 1.

Figure 1: The permutation 312⊕ 2413 = 3125746

A nonempty permutation which is not the direct sum of two nonempty permutations
is called ⊕-irreducible. Each permutation π can be written uniquely as a direct sum of
⊕-irreducible ones, called the blocks of π; their number, denoted by bl(π), is the block
number of π.

Example 3.1. bl(45321) = 1, bl(31254) = 2, and bl(1234) = 4.

Observation 3.2. The block number of a permutation π ∈ Sn is

bl(π) = 1+ ∣{1 ≤ i ≤ n − 1 ∶ max(π(1), . . . , π(i)) < min(π(i + 1), . . . , π(n))}∣.

The following equivalent definition was proposed by Michael Joseph and Tom Roby [11].

Observation 3.3.
bl(π) = ∣{1 ≤ i ≤ n ∶ (∀j ≤ i)π(j) ≤ i}∣.

3.2 Counting 321-avoiding permutations by block number

Recall from Section 2.2 the Catalan generating function

c(x) ∶=
∞

∑
n=0

Cnxn.

One can prove without difficulty (see [1])
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Proposition 3.4. For any fixed positive integer k, the ordinary generating function for the num-
ber of 321-avoiding permutations in Sn (n ≥ k) with exactly k blocks is (xc(x))k.

Combining Proposition 3.4 with Proposition 2.4 we deduce

Corollary 3.5. For any integers 1 ≤ k ≤ n,

∣{π ∈ Sn(321) ∶ bl(π) = k}∣ = {π ∈ Sn(321) ∶ ldes(π−1) = n − k}∣
= ∣SYT(n − 1, n − k)∣.

Corollary 3.5 is refined in this paper; see Theorem 1.3 above and Corollary 4.6 below.

4 Equi-distribution

Definition 4.1. For 1 ≤ k ≤ n denote

Bln,k ∶= {π ∈ Sn(321) ∶ bl(π) = k}

and
Ln,k = {π ∈ Sn(321) ∶ ldes(π−1) = k}.

Theorem 1.3 is proved via a left-to-right-maxima-preserving bijection from Bln,k to
Ln,n−k.

Definition 4.2. Define maps fn ∶ Sn(321) → Sn(321), recursively, for all n ≥ 1. For n = 1 the
definition is obvious, since S1(321) consists of a unique permutation. For π ∈ Sn(321),
n ≥ 2, the recursive definition of fn(π) depends on k ∶= bl(π) and on the locations of the
letters n − 1 and n in π. Distinguish the following three cases:

Case A: π−1(n) = n, i.e., n is in the last position.
Then: delete n, apply fn−1, and insert n at the last position.

Case B: π−1(n − 1) < π−1(n) < n, i.e., n is to the right of n − 1 but not in the last position.
Then: delete n, apply fn−1, insert n at the same position as in π, and multiply on
the left by the transposition (n − k − 1, n − k).

Case C: π−1(n) < π−1(n − 1), i.e., n − 1 is to the right of n (and must be the last letter,
since π is 321-avoiding).
Then: let π′ ∶= (n − 1, n)π, define fn(π′) according to case A above, and multiply it
on the left by the cycle (n − k, n − k + 1, ..., n).

Remark 4.3. This recursive definition yields a sequence of permutations (πn, πn−1, . . . , π1),
starting with πn = π. For each 2 ≤ i ≤ n, πi−1 ∈ Si−1 is obtained from πi ∈ Si by deleting i
from πi (in cases A and B) or by deleting i from (i − 1, i)πi (in case C). To recover fi(πi) from
fi−1(πi−1), the letter i is inserted exactly where it was deleted (for example — in the last position,
in cases A and C), and then the permutation is multiplied, on the left, by a suitable cycle.
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Example 4.4. Let π = 31254786 ∈ S8, so that bl(π) = 3 and ltrMax(π) = {1, 4, 6, 7}. The
recursive process is illustrated by the following diagram, where the arrow πi → πi−1 is
decorated by the case and by the corresponding cycle.

π = π8 = 31254786 B
ÐÐ→
(45)

π7 = 3125476 C
ÐÐÐ→
(4567)

π6 = 312546

A
Ð→ π5 = 31254 C

ÐÐÐ→
(345)

π4 = 3124 A
Ð→ π3 = 312

C
ÐÐ→
(23)

π2 = 21 C
ÐÐ→
(12)

π1 = 1.

f1(π1) = 1
(12)
ÐÐ→ f2(π2) = 21

(23)
ÐÐ→ f3(π3) = 312Ð→ f4(π4) = 3124

(345)
ÐÐÐ→ f5(π5) = 41253Ð→ f6(π6) = 412536
(4567)
ÐÐÐ→ f7(π7) = 5126374

(45)
ÐÐ→ f8(π) = f8(π8) = 41263785.

Note that here ldes( f8(π)−1) = 5 = 8−bl(π) and ltrMax( f8(π)) = {1, 4, 6, 7} = ltrMax(π).

Our main claim is

Theorem 4.5. For each 1 ≤ k ≤ n, the map fn defined above is a left-to-right-maxima-preserving
bijection from Bln,k onto Ln,n−k.

The (quite technical) proof of Theorem 4.5 is given in the full paper version [1].

Theorem 1.3 follows from Theorem 4.5, and implies in turn

Corollary 4.6. For every positive integer n,

∑
π∈Sn(321)

xDes(π)tπ−1
(n)qbl(π) = ∑

π∈Sn(321)
xDes(π)tπ−1

(n)qn−ldes(π−1
).

Proof. By Observation 2.2, the set ltrMax(π) determines Des(π). In addition, π−1(n) is
the maximal element of ltrMax(π).

5 Proof of Theorem 1.2

Setting t = 1 in Corollary 4.6 gives

∑
π∈Sn(321)

xDes(π)qbl(π) = ∑
π∈Sn(321)

xDes(π)qn−ldes(π−1
),
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and comparing the coefficients of qk on both sides gives

Q(Bln,k) = Q(Ln,n−k) (1 ≤ k ≤ n).

It therefore suffices to prove the claim for Ln,n−k instead of Bln,k.
Note that a permutation π is 321-avoiding if and only if height(Pπ) < 3, in the termi-

nology of Section 2.1. The set

Ln,n−k = {π ∈ Sn(321) ∶ ldes(π−1) = n − k}
= {π ∈ Sn ∶ height(Pπ) < 3 and ldes(Pπ) = n − k}

is therefore a disjoint union of Knuth classes and thus, by Proposition 2.7, Schur-positive.
By the above description of Ln,n−k, Fact 2.3 and Proposition 2.6,

Q(Ln,n−k) = ∑
π∈Ln,n−k

Fn,Des(π) = ∑
λ⊢n

`(λ)<3

∑
P∈SYT(λ)

ldes(P)=n−k

∑
Q∈SYT(λ)

Fn,Des(Q)

= ∑
λ⊢n

`(λ)<3

∣{P ∈ SYT(λ) ∶ ldes(P) = n − k}∣ sλ.

We conclude that, for every λ ⊢ n,

⟨Q(Bln,k), sλ⟩ = ⟨Q(Ln,n−k), sλ⟩ =

⎧⎪⎪
⎨
⎪⎪⎩

∣{P ∈ SYT(λ) ∶ ldes(P) = n − k}∣, if `(λ) < 3;
0, otherwise.

(5.1)

For k = n we have ldes(P) = 0 only for the unique tableau of shape λ = (n), so that

⟨Q(Ln,0), sλ⟩ = δλ,(n)

and therefore
Q(Ln,0) = s(n)

as claimed.
Assume now that 1 ≤ k ≤ n− 1, so that n ≤ (n− 1) + (n− k). By the Branching Rule [12,

Theorem 2.8.3], if λ ⊢ n is not contained in (n − 1, n − k) then

⟨χ(n−1,n−k) ↓
S2n−k−1
Sn

, χλ⟩ = 0,

and also
⟨Q(Ln,n−k), sλ⟩ = 0

since a standard tableau P ∈ SYT(λ) (with `(λ) < 3, namely λ = (n −m, m) with either
m = 0 or m > n − k) cannot have ldes(P) = n − k.



10 Ron M. Adin, Eli Bagno and Yuval Roichman

If λ = (n −m, m) with 1 ≤ m ≤ n − k then

⟨χ(n−1,n−k) ↓
S2n−k−1
Sn

, χ(n−m,m)⟩ = ∣SYT((n − 1, n − k)/(n −m, m))∣.

Rotating the shape by 180○ within a 2× n box, the right side is seen to be equal to

∣SYT((n −m, m)/(k, 1))∣.

This, in turn, is equal to the number of SYT of shape (n −m, m) with the smallest k + 1
entries filling a (k, 1) shape in some specific order, say the one with 1, . . . , k in the first
row and k + 1 in the second. These are exactly the SYT of shape (n − m, m) with first
descent equal to k. By Lemma 2.8, this number is equal to the number of SYT of shape
(n −m, m) with last descent equal to n − k, namely to

∣{P ∈ SYT(λ) ∶ ldes(P) = n − k}∣ = ⟨Q(Ln,n−k), sλ⟩.

Thus
Q(Ln,n−k) = ch(χ(n−1,n−k) ↓

S2n−k−1
Sn

),

as claimed.

6 Final remarks

6.1 Hilbert series

Let Pn/In be the quotient of the polynomial ring Pn = Q[x1, . . . , xn] by the ideal generated
by quasi-symmetric functions without constant term. This algebra was studied by Aval,
Bergeron and Bergeron [5], who determined its Hilbert series with respect to the grading
by total degree in terms of statistics on Dyck paths. An alternative description follows
from Corollary 4.6.

Proposition 6.1. The Hilbert series of the quotient Pn/In, graded by total degree, is equal to

∑
π∈Sn(321)

qn−bl(π).

It is now desired to find two different bases for the graded ring Pn/In, both indexed
by 321-avoiding permutations, with total degree equal to the block-number and to the
last descent, respectively. Determining a nicely behaved linear action of the symmetric
group (or of the Temperley-Lieb algebra) on these bases may provide a representation
theoretic proof of Corollary 4.6.
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6.2 Schur-positive pattern-statistic pairs

Sagan and Woo [13] raised the problem of finding Schur-positive pattern-avoiding sets.
A natural goal is to look, further, for Schur-positive statistics on pattern-avoiding sets.

Definition 6.2. Let stat ∶ Sn Ð→ N be a permutation statistic, and let ∅ ≠ Π ⊆ Sm be a
nonempty set of patterns. The pattern-statistic pair (Π, stat) is Schur-positive if

Q({π ∈ Sn(Π) ∶ stat(π) = k})

is Schur-positive for all integers n ≥ 1 and k ≥ 0.

By Proposition 2.7, sets of permutations which are closed under Knuth relations are
Schur-positive. It follows that if Sn(Π) is closed under Knuth relations for every n, and
the statistic stat is also invariant under these relations, then (Π, stat) is a Schur-positive
pair. For example, letting ides(π) ∶= ∣Des(π−1)∣ and em ∈ Sm be the identity permutation,
the pair ({em}, ides) is Schur-positive. For similar reasons, the pair ({132, 312}, imaj) is
Schur-positive, where imaj(π) is the major index of π−1.

An example of a different type was given in this paper: By Theorem 1.2, ({321}, bl) is
a Schur-positive pair. Note that the block number is not invariant under Knuth relations.

Problem 6.3. Find other Schur-positive pattern-statistic pairs, which are not invariant
under Knuth relations.
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